3.218 \(\int \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=116 \[ \frac{a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{2 d \sqrt{a \sec (c+d x)+a}}+\frac{3 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{4 d \sqrt{a \sec (c+d x)+a}}+\frac{3 \sqrt{a} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{4 d} \]

[Out]

(3*Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (3*a*Sec[c + d*x]^(3/2)*Sin[c + d
*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.167241, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {3803, 3801, 215} \[ \frac{a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{2 d \sqrt{a \sec (c+d x)+a}}+\frac{3 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{4 d \sqrt{a \sec (c+d x)+a}}+\frac{3 \sqrt{a} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(3*Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (3*a*Sec[c + d*x]^(3/2)*Sin[c + d
*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3803

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*d
*Cot[e + f*x]*(d*Csc[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(2*a*d*(n - 1))/(b*(
2*n - 1)), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a
^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} \, dx &=\frac{a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt{a+a \sec (c+d x)}}+\frac{3}{4} \int \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{3 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt{a+a \sec (c+d x)}}+\frac{3}{8} \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{3 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt{a+a \sec (c+d x)}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac{3 \sqrt{a} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{4 d}+\frac{3 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.495665, size = 100, normalized size = 0.86 \[ \frac{2 a \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x) \left (\frac{1}{8} \cos (c+d x) (3 \cos (c+d x)+2)+\frac{3 \sin ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )}{8 \sqrt{1-\sec (c+d x)} \sec ^{\frac{5}{2}}(c+d x)}\right )}{d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*a*((Cos[c + d*x]*(2 + 3*Cos[c + d*x]))/8 + (3*ArcSin[Sqrt[1 - Sec[c + d*x]]])/(8*Sqrt[1 - Sec[c + d*x]]*Sec
[c + d*x]^(5/2)))*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.26, size = 221, normalized size = 1.9 \begin{align*}{\frac{\cos \left ( dx+c \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1 \right ) }{16\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}} \left ( 3\,\sqrt{2}\arctan \left ( 1/4\,\sqrt{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}-3\,\sqrt{2}\arctan \left ( 1/4\,\sqrt{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+6\,\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +4\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/16/d*(3*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)^2-3*2^(1/
2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^2+6*(-2/(cos(d*x+c)+1))^
(1/2)*cos(d*x+c)*sin(d*x+c)+4*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*(1/cos(d*x+c))^(5/2)*(a*(cos(d*
x+c)+1)/cos(d*x+c))^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)/sin(d*x+c)^2*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [B]  time = 2.80039, size = 1706, normalized size = 14.71 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/16*(12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(d*x + c), cos(d*x + c)))
 + 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*
(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 12*(sqr
t(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 3*(2*(2*cos
(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4
*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x +
c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c) +
1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(
2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)
))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)
)) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4
*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4
*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2
*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*s
in(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x
+ 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c
)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x
 + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(s
in(d*x + c), cos(d*x + c))) + 2) - 12*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(7/
2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*s
in(5/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(
2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 12*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) +
 sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*sqrt(a)/((2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c)
+ cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin
(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.79729, size = 953, normalized size = 8.22 \begin{align*} \left [\frac{3 \,{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac{4 \,{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac{4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{16 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac{3 \,{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac{2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{8 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^
2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(co
s(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(3*cos(d*x + c) + 2)*sin(d*x + c)/
sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 1/8*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*arcta
n(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos
(d*x + c) - 2*a)) + 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(3*cos(d*x + c) + 2)*sin(d*x + c)/sqrt(cos(d*x +
 c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sec(d*x + c) + a)*sec(d*x + c)^(5/2), x)